Synthesis of 2,3-Dihydropyrido- and 2,3-Dihydropyrimido-[1,4]diazepines from Triaminopyridine and Triaminopyrimidine Braulio Insuasty*, Alfredo Perez, John Valencia and Jairo Quiroga

Department of Chemistry, Universidad del Valle, A.A. 25360, Cali, Colombia Received February 26, 1997

The reaction of 2,3,6-triaminopyridine 1 and 4,5,6-triaminopyrimidine 2 with one equivalent of the chalcones 3, in acetic acid, leads to the formation of the 8-amino-2,3-dihydro-1*H*-pyrido[2,3-*b*][1,4]diazepine and 6-amino-2,3-dihydro-1*H*-pyrimido[4,5-*b*][1,4]diazepine derivatives 4 and 5. The products were characterized by NMR techniques such as ¹³C, ¹H, and DEPT including selective ¹³C{¹H} decoupling experiments.

J. Heterocyclic Chem., 34, 1555 (1997).

Derivatives of 1*H*-1,4-diazepine have properties of biological and pharmacological interest [1-3]. The reaction of aromatic and heterocyclic 1,2-diamines with α , β -unsaturated ketones (chalcones) is a very convenient and versatile method for the preparation of condensed 1,4-diazepine systems [4-11]. A predominant feature of these reactions is their high regioselectivity.

The purpose of this work was to study the reaction of 2,3,6-triaminopyridine (1) and 4,5,6-triaminopyrimidine (2) with chalcones 3, a synthetic route for 8-amino-2,4-diaryl-2,3-dihydro-1*H*-pyrimido[2,3-*b*][1,4]diazepines 4 and 6-amino-2,4-diaryl-2,3-dihydro-1*H*-pyrimido [4,5-*b*]-[1,4]diazepines 5.

Upon heating, triamines 1 and 2 react with equimolar amounts of 1,3-diaril-2-propenones in ethanol solution, in the presence of catalytic amounts of acetic acid, to generate the desired structures 4a-d and 5a-f in good yields.

Because triamines 1 and 2 contain non-equivalent amino groups at the *ortho*-position, the regioisomeric cyclization products 4, 5 and 4', 5' were expected. However, the formation of a single product was observed in both reactions. We assume that, in the initial step, a condensation reaction between the carbonyl group of 3 and the more nucleophilic amino group (3-NH₂ in 1 and 5-NH₂ in 2, respectively) takes place [12-15]. In the second step, a Michael's addition of the less nucleophilic amino group (at the *ortho* position in 1 and 2) to the C=C double bond may occur.

The ir spectra show typical bands between 3330 and 3420 cm⁻¹ (N-H), 1600 and 1620 cm⁻¹ (C=N). In addition, compounds 4 and 5c present absorption at 1340-1530 cm⁻¹ (NO₂ stretching vibrations).

The ¹H-nmr data for all the products are summarized in Table 1. The proton on N-1 gives rise to a doublet $(\delta = 5.24-5.56$, for 4 and 7.50-7.88, for 5, ³J = 4.9 ±0.3

Hz), indicating coupling to the vicinal proton on C-2 (poorly resolved triplet at $\delta = 4.91\text{-}5.35$ ppm). The geminal protons on C-3 are at $\delta = 2.82\text{-}4.08$ ppm (two doublets of doublets) and the coupling constant between them is $^2\text{J} = -14.7 \pm 0.1$ Hz. Vecinal coupling of geminal protons to 2-H are characterized by $_3\text{J}_{trans} = 6.0 \pm 0.2$ Hz and $^3\text{J}_{cis} = 1.2 \pm 0.2$ Hz. Protons in the amino groups appear as singlets at $\delta = 4.47\text{-}4.59$ and 7.77-7.92 ppm, for 4 and 5, respectively. In addition, two doublets are observed in the spectra of 4 related to protons 6H ($\delta = 7.52\text{-}7.57$ ppm) and 7H ($\delta = 6.09\text{-}6.14$ ppm) with ortho-constant J = 8.2 Hz.

The 13 C-nmr data of 4 and 5 are summarized in Table 2. Signal assignment was made based on DEPT experiments and data from our previous work [9,10]. Relevant features are as follows. The signal of C-5a appear at δ 100.3-101.0

and 106.8-107.2 ppm for 4 and 5, respectively. On the other hand, C-9a shows at δ 156.6-162.3 ppm. These findings can be explained in terms of the strong pushpull effect of the amino and C=N groups linked to the C=C double bond in structures 4 and 5. The isomeric structures 4' and 5' were ruled out by results from selective low-power ¹³C, ¹H decoupling experiments. In fact, C-5a in 4 and 5 show as doublets with ³J= 5.3-5.5 Hz in the coupled ¹³C nmr spectra. Radiation onto the proton signal of 1N-H turns the C-5a signal into a singlet. Thus, the single frequency decoupling experiments are consistent with the structures 4 and 5 only.

No additional structural information was attained from the mass spectra of 4 and 5, was observed. All compounds show well-defined molecular ions and characteristic molecular-ion fragmentation patterns [16].

Table 1

1-NMR Data of 4 and 5 (8 values, TMS as the Internal Standard, in DMSO-d₆, 400 MHz)

Compound	1-H	2-H	3-H	6-H	7-H	6-NH ₂	8-NH ₂	8-CH	2-Ar	4-Ar	
	d	τ	dd dd			S		S			
4a [a]	5.56	4.95	3.20 3.58	7.52	6.10		4.59		7.14-7.30	7.73-8.15	
4b [a]	5.24	4.91	3.24 3.63	7.55	6.09		4.47		7.11-7.47	7.72-8.18	
4c [a]	5.40	4.93	3.22 3.28	7.56	6.09		4.53		7.20-7.32	7.73-8.13	
4d [a]	5.32	5.18	3.22 3.43	7.57	6.14		4.50		7.41-8.12	7.71-8.16	
5a	7.76	5.30	3.00 3.91			7.90		6.04	7.19-7.41	7.29-7.76	
5b	7.67	5.31	2.96 3.93			7.91		6.08	7.20-7.32	7.37-7.80	
5c	7.88	5.35	2.98 4.08			7.92		5.94	7.17-7.36	7.96-8.18	
5d	7.58	5.30	2.98 3.90			7.90		5.73	7.12-7.40	7.12-7.72	2.38 (CH ₃)
5e	7.88	5.18	2.82 3.80			7.77		6.01	7.04-7.22	7.35-7.62	-
5f	7.50	5.27	2.96 3.88			7.88		5.68	7.18-7.36	6.87-7.77	3.86 (OCH ₃)

[[]a] Measurements in deuteriochloroform.

Table 2 $$^{13}\text{C-nmr}$$ Data of 4 and 5 (8 values, TMS as the Internal Standard, in DMSO-d₆, 400 MHz)

Con	npound	4a [a]	4 b [a]	4c [a]	4d [a]	5a	5b	5c	5d	5e	5f
	C-2	60.7	60.5	61.1	60.9	59.2	59.1	58.8	59.2	58.9	59.4
	C-3	40.5	40.6	41.0	39.7	39.5	39.2	39.2	39.2	39.3	39.1
	C-4	156.3 [b]	156.5 [b]	156.4 [b]	162.0 [b]	162.4 [ь]	162.4	162.8	162.4 [b]	162.3 [b]	162.2 [ь]
	C-5a	100.9	100.6	100.3	101.0	107.1	107.0	107.0	107.2	106.8	107.2
	C-6	146.5	146.1	146.3	156.3	153.5	153.6	153.7	153.6	153.4	153.8
	C-7	120.9	121.9	120.3	120.5						
	C-8	147.8	147.9	147.8	156.5	155.4	155.2	156.2	155.4	155.3	155.2
	C-9a	156.6 [b]	156.6 [b]	157.1 [ь]	162.3 [b]	161.1 [Ь]	159.8	158.3	161.2 [ь]	159.7 [ь]	161.5 [b]
Ar	C_i	141.9	142.3	143.3	144.0	140.3	139.0	143.8	137.6	139.2	133.2
	•	143.3	143.9	144.0	145.8	144.1	144.0	146.9 [ь]	138.8	143.7	144.2
	$C_{o,m}$	123.3	123.5	123.4	123.5	126.0	125.9	123.1	126.0	125.6	113.2
	0,111	127.3	127.1	126.1	124.1	126.8	127.9	125.8	126.8	127.9	126.0
		127.7	127.8	127.1	127.0	128.0	128.1	127.9	128.2	128.6	128.1
		131.9	132.1	128.9	127.1	128.1	128.6	128.2	128.8	130.7	128.8
	C_p	120.9	120.4	128.1	149.9	126.8	126.9	127.0	126.8	122.6	127.0
	r	150.2	150.1	150.2	150.0	129.1	133.9	145.9 [ь]	144.2	126.7	160.6
									20.8		55.4
									(CH_3)		(OCH ₃)

[[]a] Measurements in deuteriochloroform. [b] Interchangeable signals.

EXPERIMENTAL

Melting points are uncorrected. The ir spectra were obtained in potassium bromide pellets with a Perkin-Elmer 599B spectrometer. The ¹H -and ¹³C nmr spectra were run on a Bruker AM 400, in deuteriochloroform or DMSO-d₆. The mass-spectra were recorded on either Varian MAT 711 and Finnigan M 95, at 70 eV. Elemental analysis was done on a LECO CHNS-900.

8-Amino-2,3-dihydro-2,4-diphenyl-1*H*-pyrido[2,3-*b*]-[1,4]diazepines **4a-d**, and 8-Amino-2,3-dihydro-2,4-diphenyl-1*H*-pyrimido[4,5-*b*][1,4]diazepines **5a-f**.

General Procedure.

A solution of triamine 1 or 2 (3.2 mmoles) and 1,3-diaryl-2-propenone (chalcone 3, 3.2 mmoles) in absolute ethanol (15 ml) and acetic acid (1 ml) was refluxed for 4 hours. After neutralizing with ammonia and cooling to 0°, the reaction mixture was allowed to stand overnight. The resulting precipitate was filtered. and recrystallized from methanol. All compounds 4 were obtained as red crystals. Compounds 5 were yellow except for 5c, which was obtained as red crystals. Yields and melting points are summarized in Scheme 1.

8-Amino-2,4-diphenyl-2,3-dihydro-1H-pyrido[2,3-b][1,4]-diazepine (4a).

This compound had ms: $(70 \text{ eV}) \text{ m/z } (\%) = 360/358 (36/70, M^{+*}, Cl isotope pattern), 345/343 (9/23, M^{+*} -CH₃), 207/205 (31/100, M^{+*} -4-ClC₆H₄CH=CH₂).$

Anal. Calcd. for C₂₀H₁₆N₅O₂Cl: C, 61.00; H, 4.09; N, 17.78. Found: C, 61.13; H, 4.02; N, 17.72.

8-Amino-2-(4-bromophenyl)-4-(nitrophenyl)-2,3-dihydro-1*H*-pyrido[2,3-*b*][1,4]diazepine (4b).

This compound had ms: (70 eV) m/z (%) = 439/437 (60/71, M+*, Br isotope pattern), 424/422 (10/12, M+* -CH₃), 282 (44, M+* -BrC₆H₄), 256 (32), 255 (100, M+* -4-BrC₆H₄CH=CH₂), 210 (29), 209 (61), 182 (13), 149 (17), 135 (48), 134 (14), 118 (20), 108 (44), 107 (29), 104 (16), 103 (19), 81 (45).

Anal. Calcd. for C₂₀H₁₆N₅O₂Br: C, 54.81; H, 3.68; N, 15.98. Found: C, 54.72; H, 3.56; N, 15.89.

8-Amino-2-phenyl-4-(nitrophenyl)-2,3-dihydro-1*H*-pyrido-[2,3-b][1,4]diazepine (4c).

This compound had ms: $(70 \text{ eV}) \text{ m/z } (\%) = 360 (24), 359 (100, M^{++}), 358 (13), 344 (16, M^{++} -CH_3), 282 (27, M^{++} -C_6H_5), 255 (32, M^{++} -C_6H_5CH=CH_2), 253 (29), 252 (31), 223 (28), 211 (15), 210 (34), 209 (18), 150 (16), 149 (34), 105 (11), 104 (18), 103 (22).$

Anal. Calcd. for C₂₀H₁₇N₅O₂: C, 66.84; H, 4.77; N, 19.49. Found: C, 66.94; H, 4.72; N, 19.54.

8-Amino-2,4-di(4-nitrophenyl)-2,3-dihydro-1H-pyrido[2,3-b]-[1,4]diazepine (4d).

This compound had ms: (70 eV) m/z (%) = 405 (21), 404 (100, M+*), 402 (11), 389 (10, M+* -CH₃), 282 (41, M+* -4-NO₂-C₆H₄CH=CH₂), 267 (11), 256 (21), 255 (39), 210 (17), 209 (26), 135 (11).

Anal. Calcd. for $C_{20}H_{16}N_6O_4$: C, 59.40; H, 3.99; N, 20.78. Found: C, 59.47; H, 3.92; N, 20.85.

6-Amino-2,4-diphenyl-2,3-dihydro-1H-pyrimido[4,5-b][1,4]-diazepine (5a).

This compound had ms: $(70 \text{ eV}) \text{ m/z } (\%) = 330 (100, \text{ M}^{+\circ}), 315 (29, \text{ M}^{+\circ} - \text{CH}_3), 253 (17, \text{ M}^{+\circ} - \text{C}_6\text{H}_5), 226 (63, \text{ M}^{+\circ} - \text{C}_6\text{H}_5\text{CH} = \text{CH}_2), 104 (11), 103 (10).$

Anal. Calcd. for C₁₉H₁₇N₅: C, 72.36; H, 5.43; N, 22.21. Found: C, 72.30; H, 5.36; N, 22.25.

6-Amino-4-(4-chorophenyl)-2-phenyl-2,3-dihydro-1*H*-pyrimido-[4,5-*b*][1,4]diazepine (5b).

This compound had ms: (70 eV) m/z (%) = 366/364 (9/17, M+°, Cl isotope pattern), 351/349 (9/23, M+° -CH₃), 262/260 (29/100, M+° -C₆H₅CH=CH₂), 77 (18), 68 (20).

Anal. Calcd. for C₁₉H₁₆N₅Cl: C, 65.24; H, 4.61; N, 20.02. Found: C, 65.18; H, 4.65; N, 20.08.

6-Amino-4-(4-nitrophenyl)-2-phenyl-2,3-dihydro-1*H*-pyrimido-[4,5-*b*][1,4]diazepine (5c).

This compound had ms: (70 eV) m/z (%) = 375 (100, M+°), 360 (25, M+° -CH₃), 298 (14, M+-C₆H₅), 271 (100, M+° -C₆H₅CH=CH₂), 253 (19), 227 (20), 225 (27), 104 (39), 102 (22), 77 (24).

Anal. Calcd. for $C_{19}H_{16}N_6O_2$: C, 63.33; H, 4.48; N, 23.32. Found: C, 63.38; H, 4.52; N, 23.28.

6-Amino-4-(4-methylphenyl)-2-phenyl-2,3-dihydro-1H-pyrimido-[4,5-b][1,4]diazepine (5d).

This compound had ms: (70 eV) m/z (%) = 344 (42, M⁺⁺), 329 (42, M⁺⁺ -CH₃), 267 (16, M⁺⁺ -C₆H₅), 253 (29), 240 (100, M⁺⁺ -C₆H₅CH=CH₂), 227 (17), 91 (16), 77 (17), 68 (13).

Anal. Calcd. for $C_{20}H_{19}N_5$: C, 72.93; H, 5.81; N, 21.26. Found: C, 72.87; H, 5.76; N, 21.22.

6-Amino-4-(4-bromophenyl)-2-phenyl-2,3-dihydro-1H-pyrimido-[4,5-b][1,4]diazepine (5e).

This compound had ms: (70 eV) m/z (%) = 410/408 (67/75, M^{+*}, Br isotope pattern), 395/393 (19/22, M^{+*} -CH₃), 333/331 (5/6, M^{+*} -C₆H₅) 306/304 (70/62, M^{+*} -C₆H₅CH=CH₂), 253 (21), 227 (31), 183 (21), 151 (16), 124 (31), 104 (62), 102 (67), 77 (36), 43 (100).

Anal. Calcd. for $C_{19}H_{16}N_5Br$: C, 57.88; H, 4.09; N, 17.76. Found: C, 57.84; H, 4.14; N, 17.82.

6-Amino-4-(4-methoxyphenyl)-2-phenyl-2,3-dihydro-1*H*-pyrimido[4,5-*b*][1,4]diazepine (5f).

This compound had ms: (70 eV) m/z (%) = 360 (100, M+ $^{\circ}$), 345 (38, M+ $^{\circ}$ -CH₃), 283 (5, M+ $^{\circ}$ -C₆H₅), 256 (24, M+ $^{\circ}$ -C₆H₅CH=CH₂), 242 (5), 133 (7).

Anal. Calcd. for $C_{20}H_{19}N_5O$: C, 69.55; H, 5.54; N, 20.28. Found: C, 69.59; H, 5.60; N, 20.22.

Aknowledgment.

This work was financially supported by Colciencias and Universidad del Valle.

REPERENCES AND NOTES

- [1] L. H. Sternbach, Prog Drug Res., 22, 258 (1978).
- [2] J. T. Sharp in Comprehensive Heterocyclic chemistry, Vol 1, A. R. Katritzky, C. W. Rees and W. Lwowski, eds, 1984, p 593 and references therein.

- [3] A. Chimirri, R. Gitto, S. Grasso, A. M. Monforte, G. Romero and M. Zappala, *Heterocycles*, 36, 601 (1993) and references therein.
- [4] A. Nawojski and W. Nawrocka, Rocz. Chem., 51, 2117 (1977); Chem Abstr., 88, 136578u (1978)
- [5] F. G. Yaremenko, V. D. Orlov, N. N. Kolos and F. Lavrushin, *Khim, Geterotsikl. Soedin.*, 848 (1979).
- [6] V. D. Orlov, J. Ouiroga and N. N. Kolos, Khim, Geterotsikl. Soedin., 363 (1987)
- [7] B. Insuasty, R Abonia and J. Quiroga, An. Quim., 88, 718 (1992).
- [8] V. D. Orlov, N. N. Kolos, J. Ouiroga, Z. Kaluski, E. Figas and A. Potekhin, *Khim, Geterotsikl. Soedin.*, 506 (1992).
- [9] B. Insuasty, M. Ramos, J. Quiroga, A. Sanchez, M Nogueras, N. Hanold and H. Meier, J. Heterocyclic Chem., 31, 61 (1994).

- [10] B. Insuasty, M. Ramos, R. Moreno, J. Quiroga, A. Sanchez, M. Nogueras, N. Hanold and H. Meier, J. Heterocyclic Chem., 32, 1229 (1995).
- [11] B. Insuasty, R Abonia, J. Quiroga and H. Meier, J. Heterocyclic Chem., 30, 229 (1993).
- [12] L. A. Yanovskaya, G. V. Kryshtal and V. V. Kulganek, *Usp. Khim.*, 53, 1280 (1984).
- [13] V. D. Orlov, I. Z. Papiashvili and P. A. Grigorov, Khim, Geterotsikl. Soedin., 671, (1983).
 - [14] E. S. Petrov, Usp. Khim., 52, 1974, (1983).
- [15] E. Bosch, J. Guiteras, A. Izquierdo and M. D. Prat, *Anal. Letters.*, 21, 1273 (1988).
- [16] J. Quiroga, B. Insuasty and G. Gallo, Boll Soc. Chil. Quim., 41, 415 (1996).